

The Modular Benchmarking Framework Documentation

This is the starting point for the Modular Benchmarking Framework Documentation. The documentation is still in progress!

Motivation

Robotic manipulation is a high level and complex task which combines a range of different components. Although one might want to compare the overall system, it becomes hard to dissociate and evaluate each component of a manipulation pipeline, and therefore to obtain a fair comparison between different specific solutions. Hence, we propose the Modular Benchmarking Framework, a ROS-based framework that enables to: 1) easily benchmark different solutions with minimal coding and integration effort and 2) separately compare each component of a pipeline, which is essential to drive progress in this area.

Robot arms with a ROS interface and manipulators can be integrated without too much effort, allowing to save effort and time that could be spent on developing algorithms to solve real world problems. This framework also allows easy integration of a wide range of methods for manipulation without caring about which part is robot-specific, allowing researchers that are relatively new to robotics to easily experiment their methods.

Contents

	Installing the framework

	Configuring the framework

	Integrating hardware to the framework

	Using the task constructor

	Framework

	Contributing

Installing the framework

Our software is deployed using Docker. Docker is a container framework where each container image is a lightweight, stand-alone, executable package that includes everything needed to run it. It is similar to a virtual machine but with much less overhead. Follow the instructions in this section to get the latest Docker container up and running.

Hardware specifications

In order to run our software and the ROS software stack you will need to meet some hardware requirements.

	CPU: Intel i5 or above

	RAM: 4GB or above Hard Drive: Fast HDD or SSD (Laptop HDD can be slow)

	Graphics Card: Nvidia GPU (optional)

	OS: Ubuntu 16.04 or 18.04 (Active development)

The most important one is to have a fast HDD or an SSD.

Installing the framework

We have created a one-liner that is able to install Docker, download the image and create a new container for you. To use it, you first need to have a PC with Ubuntu installed on it (16.04 or 18.04 tested).

Prerequisite

We strongly advise to run the one-liner on a machine without any version of docker installed. If you have never installed it, you can skip to the next subsection. If you are already using doccker, please be aware that the resulting container might not work. If it is the case, you can run the following lines:

sudo apt purge -y docker-engine docker docker.io docker-ce
sudo apt autoremove -y --purge docker-engine docker docker.io docker-ce

These instructions are uninstalling docker but should not remove any of the containers already stored on your machine.

You have a nvidia card

If the machine you are going to use to run the framework has a Nvidia card and the nvidia drivers are on, then run the following line

bash <(curl -Ls bit.ly/run-aurora) docker_deploy product=hand_e nvidia_docker=true tag=kinetic-nvidia-release reinstall=true sim_icon=false image=shadowrobot/modular_benchmarking_framework container_name=<container_name>

You can change <container_name> by the name you want to give to the container that you are going to use.

If you have a nvidia card but are running on the xorg drivers, go to the other subsection!

You don’t have a nvidia card

If you don’t have a nvidia graphic card or if you do and don’t use the nvidia drivers, please run

bash <(curl -Ls bit.ly/run-aurora) docker_deploy product=hand_e nvidia_docker=false tag=kinetic-release reinstall=true sim_icon=false image=shadowrobot/modular_benchmarking_framework container_name=<container_name>

You can change <container_name> by the name you want to give to the container that you are going to use.

Future releases

For now, the docker that you have downloaded contains Ubuntu 16.04 and ROS Kinetic. We are currently working on the release of the framework using Ubuntu 18.04 and ROS Melodic. Stay tuned!

Configuring the framework

The Modular Benchmarking Framework allows a wide range of configuration at different levels: the config files, the task_constructor and the launch file. So all you need to modify is located in the API package.

The framework should natively be configured to run the EZGripper in simulation without any modification.

Config files

All the config files are stored in the config folder [https://github.com/shadow-robot/modular_benchmarking_framework/tree/kinetic-devel/modular_framework_api/config] of the modular_framework_api package. They gather all the different components that you might want to change in order to run your robot, without requiring any code. We will provide a detailed description of each of them.

Hardware connection

This YAML file must contain all the hardware_interface that ROS should be aware of when using the framework on the physical robot. If you are not familiar with this concept, you can read more about it on this tutorial [https://github.com/ros-controls/ros_control/wiki/hardware_interface]. The first parameter in the YAML file, robot_hardware should contain the list of all the robot hardware that are going to be defined in the same file. Each of the specific hardware interface must be derived from RobotHW. The framework will then automatically create a combined hardware interface.

 Integrating a robot to the framework

Integrating a robot to the framework

As stated in the previous section, the framework natively supports Universal Robot arms and is provided with all the packages required to operate (both in simulation and on physical setup) an EZgripper attached to an UR5 arm.

It is nevertheless likely that you are working with a different hardware. We are hence going to detail how to integrate different kind of hardware.

Common steps

The first step is to create an urdf (or xacro) file in which both the arm(s) and the manipulator(s) are defined such as here [https://github.com/ARQ-CRISP/ARQ_common_packages/blob/master/arq_robots/urdf/arq_ur5_with_ezgripper.urdf.xacro] or here [https://github.com/shadow-robot/sr_interface/blob/kinetic-devel/sr_multi_description/urdf/right_srhand_ur10.urdf.xacro].

The second step is to create a moveit_config package for the robot. You can either use the Moveit! Setup Assistant [http://docs.ros.org/kinetic/api/moveit_tutorials/html/doc/setup_assistant/setup_assistant_tutorial.html] or follow this step by step tutorial.

Using your robot in simulation

Now that you have your moveit config package ready, the only remaining step is to make it compatible with Gazebo.

In order to use ros controllers with your robot, you need to add some elements to your urdf file. Gazebo uses a specific element that links actuators to joints, called <transmission>. Each of these elements must contain at least:

	<joint name= >: which corresponds to the name of a defined joint in your urdf file that you want Gazebo to be able to actuate.

	<type>transmission_interface/SimpleTransmission</type>: which specifies the type of transmission. More information here [https://wiki.ros.org/urdf/XML/Transmission].

	<hardwareInterface> that should be present in both <joint> and <actuator> tags. It states gazebo_ros_control plugin what hardware interface to load (position, velocity or effort interfaces).

The last step is to add the gazebo_ros_control plugin to the urdf file. The plugin should look like this:

<gazebo>
 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
 <!-- Optional - Default being the value of robot name in the urdf/sdf file-->
 <robotNamespace>my_name_space</robotNamespace>
 <!-- Optional - The period of the controller update (in seconds), default is Gazebo's period -->
 <controlPeriod>my_value</controlPeriod>
 <!-- Optional - The location of the robot_description (URDF) on the parameter server, default being '/robot_description' -->
 <robotParam>my_param_value</robotParam>
 <!-- Optional - The pluginlib name of a custom robot sim interface to be used (see below for more details), default being 'gazebo_ros_control/DefaultRobotHWSim' -->
 <robotSimType>my_value</robotSimType>
 </plugin>
</gazebo>

If you want to use your own controller, you can follow this tutorial [http://gazebosim.org/tutorials/?tut=ros_control] and change the proper parameters. Now that your robot can be (in simulation at least) actuated using ROS controllers, you need to specify them both in the controllers.yaml file of your moveit config package and in the controller file.

Now you should be able to control, in simulation, your robot with Moveit and see that the motions planned and executed in Rviz match with one happens in the Gazebo window launched when the framework is being run in simulation mode.

How to know if my manipulator is fully integrated to ROS?

If you are using a manipulator that can be actuated using ROS controllers [http://wiki.ros.org/ros_controllers], then it means that your manipulator is fully integrated to ROS. It also means that your robot has a hardware interface [http://wiki.ros.org/hardware_interface]. If you have a doubt about that, try to find out if you have any file containing the definition of classed derived from hardware_interface::RobotHW. If you do, you can directly go to this subsection, otherwise please read the following subsection.

Using a physical manipulator that does not have a ROS hardware interface

If you are using a manipulator that cannot be operated using ROS controllers, no worries you can still integrate your hardware and make it work with the framework.

It is highly likely that a ROS node launched in one of your launch files is performing the control and send the information directly to the robot’s drivers. If you have developed it you know where it is, otherwise you just need to find it and isolate it. In order to integrate it to the framework, you need to transform it to an action server [http://wiki.ros.org/actionlib/Tutorials]. You will then be able to control it as you wish by sending action requests that you can pre-empt and get feedback if anything goes wrong. You can find an example here [https://github.com/ARQ-CRISP/EZGripper/blob/master/ezgripper_driver/nodes/ezgripper_controller.py].

Once you have the action server that is able to control the manipulator, change the different options in manipulator_controller_parameters.yaml so your node can be launched (do not forget to chmod +x if it’s a python file). Now you can create a second controller file in which you will only have the ROS controller defined for the robot arm (like this [https://github.com/ARQ-CRISP/ARQ_common_packages/blob/master/arq_robots/controllers/ur5_ezgripper_position_controllers.yaml]). In start_framework.launch, change the name of the controller file to be used to point to the one you just created. In order to avoid having bothersome warning and error messages (everything should still work though), do not forget to comment out the reference to the controller for your manipulator in controllers.yaml of your moveit config package.

And here you are, you should now be able to control the manipulator via the framework. In order to test it, you can create a minimalist action client [http://wiki.ros.org/actionlib/Tutorials] and after launching the framework, run the client in order to send any command to the manipulator. It should now move.

Using a physical manipulator that does have a ROS hardware interface

If you already have a ROS hardware interface for your manipulator, you might need to slightly change it. The only constraints are that the given hardware interface must have a parameter-less constructor and must have an init method with the following signature: init(ros::NodeHandle &n, ros::NodeHandle &robot_hw_nh). You can find an example of hardware interface here [https://github.com/shadow-robot/sr_ur_arm/blob/kinetic-devel/sr_ur_robot_hw/src/sr_ur_robot_hw.cpp].

You can now use the standard ROS controllers on the manipulator. If you opt for this solution, do not forget to specify it in the controller file and to possibly change the nature of the controller in controllers.yaml of your moveit config package. You should now be able to control the physical robot with Moveit. The action server node provided in the framework can be used (but you can use your own if you wish).

If you want to use a more convoluted controller for specific use cases, you can still create it. The class must be derived from controller_interface::ControllerBase and contain an action server. You can then create a plugin so the controller can be recognized by ROS and use it freely. An example is given here [http://wiki.ros.org/ros_control/Tutorials/Creating%20a%20controller]. Once again, define it in the controller file and comment out any reference to the manipulator in controllers.yaml of your moveit config package. Once the framework launched, you should be able to control the manipulator through a very minimalist action client [http://wiki.ros.org/actionlib/Tutorials].

 Using the task constructor

Using the task constructor

One of the goal of the Modular Benchmarking Framework is to be able to separate each component used for solving a problem related to robotic manipulation. This way, we can easily re-use any component that seems powerful in a given context to another and study how good or bad it can be transferred or combined with other components. In order to do so, we need to be able to easily create a wide range of tasks the robot should execute independently of what hardware it is or which method is being used. Then, we can thoroughly compare the different metrics obtained during the experiments and conclude that, for instance, grasp synthesis method A is better than method B given a specific motion planner, controller and so on for a specific task.

Principle

We believe that most of the tasks related to manipulation can be represented as a (complex) combination of atomic actions, such as planning, predicting a pose, generating a trajectory and so on. Considering such simple actions and linking them together has several benefits. The first one is to be able to create more complex and task-oriented behaviours through the links between the actions. The other one is that we can link each component of a method to one or several actions and therefore allow to analyse the real performance of each component individually and test different combinations. Considering each action to be a state, then a task can be defined as a state machine [https://en.wikipedia.org/wiki/Finite-state_machine].

Designing a state machine

We propose an intuitive way to create state machines, which does not require any knowledge about ROS or how to implement state machines using smach [http://wiki.ros.org/smach]. The only thing you need to do is to describe in a YAML file which states (or state machines) you want to use and how to link them, that’s all. The YAML file should be stored inside the folder task_constructor_scripts of the modular_framework_api package.

Format of the YAML files

Each task constructor script (YAML file) must be structured the following way:

name: <state_machine_name>
source: <template_filename>
node_name: <name_of_node_running_state_machine>
outcomes: <list_of_state_machine_outcomes>
states:
 - <state1>:
 source: <state_filename>
 <option_1_state1>: <value_option_1_state1>
 <option_2_state1>: <value_option_2_state1>
 ...
 <option_n_state1>: <value_option_n_state1>
 transitions: {<state_outcome1>: <state2>, <state_outcome2>: <a_state_or_state_machine_outcome>}
 - <state2>:
 source: <state_filename>
 <option_1_state2>: <value_option_1_state2>
 <option_2_state2>: <value_option_2_state2>
 ...
 <option_n_state2>: <value_option_n_state2>
 transitions: {<state_outcome3>: <state_machine_1>, <state_outcome4>: <a_state_or_state_machine_outcome>}
 - <state_machine_1>:
 source: <template_filename>
 <option_1_state_machine_1>: <value_option_1_state_machine_1>
 <option_2_state_machine_1>: <value_option_2_state_machine_1>
 ...
 <option_n_state_machine_1>: <value_option_n_state_machine_1>
 transitions: {<state_outcome3>: <another_state>, <state_outcome3>: <a_state_or_state_machine_outcome>}
 states:
 - <state11>:
 source: <state_filename>
 <option_1_state11>: <value_option_1_state11>
 <option_2_state11>: <value_option_2_state11>
 ...
 <option_n_state11>: <value_option_n_state11>
 ...
 - <state_n1>:
 source: <state_filename>
 <option_1_state_n1>: <value_option_1_state_n1>
 <option_2_state_n1>: <value_option_2_state_n1>
 ...
 <option_n_state_n1>: <value_option_n_state_n1>
 ...
 - <staten>:
 source: <state_filename>
 <option_1_state1>: <value_option_1_state1>
 <option_2_state1>: <value_option_2_state1>
 ...
 <option_n_state1>: <value_option_n_state1>
 transitions: {<state_outcome_n>: <a_state_or_state_machine_outcome>, <state_outcome_n+1>: <a_state_or_state_machine_outcome>}

Let’s go over the above template and explain the different parts.

Script header

The header must be composed of:

	name: Name you want to give to the file containing the generated state machine

	source: Name of the template file that is going to be used to generate the state machine. It must be contained in the templates_directory arguments passed in the launch file.

	node_name: Name you want to give to the node that is going to run the generated state machine

	outcomes: List of different outcomes of the root state machine. For instance [success, failure].

	states: Defines all the states or state machines that you are going to need to create your task.

Using a state

Each state you want to use should be defined as follow:

- <state_name>:
 source: <state_filename>
 <state_option_1>: <state_option_1_value>
 <state_option_2>: <state_option_2_value>
 ...
 <state_option_n>: <state_option_n_value>
 outcomes: <list_of_outcomes>
 transitions: {<outcome_name>: <state_or_outcome>, <outcome_name>: <state_or_outcome>}

The can give any name to your states, we just advise you that they are meaningful in order to get a hang of what the task is about just by looking at the name of the differents states.

	source must be the name of the python file in which the state is implemented. The file must be located in the states_directory argument of the launch file.

	As long as the states are properly formatted (see here) you can also define the different options directly in the YAML file.

	outcomes define the different outcomes of the states. It must be a list, such as [success, failure].

	transitions must be specified as they are defining how to link the different states (or state machines) together. For each potential outcome of the state, specifies what should be done next. If you want the state called DummyState to follow your state if the latter outputs success then this field should be {success: DummyState}.

Nesting a state machine

Some components of a behaviour can themselve be designed as whole state machines. We can imagine a small state machine that plan and move the robot arm to its initial pose.

You can directly create such nested state machines inside the task constructor script using the following template:

states:
 - ...
 - ...
 - <state_machine_name>:
 source: <template_filename>
 <state_machine_option_1>: <state_machine_option_1_value>
 <state_machine_option_2>: <state_machine_option_2_value>
 ...
 <state_machine_option_n>: <state_machine_option_n_value>
 transitions: {<outcome_name>: <state_or_outcome>, <outcome_name>: <state_or_outcome>}
 states:
 - <state_machine_state_1_name>:
 source: <state_filename>
 <state_1_option_1>: <state_1_option_1_value>
 <state_1_option_2>: <state_1_option_2_value>
 ...
 <state_1_option_n>: <state_1_option_n_value>
 ...
 - <state_machine_state_m_name>:
 source: <state_filename>
 <state_m_option_1>: <state_m_option_1_value>
 <state_m_option_2>: <state_m_option_2_value>
 ...
 <state_m_option_n>: <state_m_option_m_value>

You can of course create several nested state machines in the same root state machine or created recursively nested state machines. The only restriction is that the source file of the nested state machines must be template files (you can find some here [https://github.com/shadow-robot/modular_benchmarking_framework/tree/kinetic-devel/modular_framework_core/templates]), and you must define the transitions in order to know what to do when the nested state machine is done. Please note that we already provide template files allowing to create a state machine fully compatible with the framework, as well as a concurrent state machine [http://wiki.ros.org/smach/Tutorials/Concurrence%20container]. In our implementation, one of the option for the state machine is to specify the information it should have access to (userdata). When using nested state machine, we often want to kind of inherit the same userdata as the parent. You can do it with userdata: self.userdata.

Miscellaneous

Although we tried our best to simplify the creation of state machines by preventing users to dive into different tutorials and face the numerous boilerplate that would come with it, defining a complex state machine might be a bit painful. That is why when creating new states (or using the one we provide) you can define some default values for the options that are unlikely to be changed and not specify them in the task constructor script.

When creating state machines (especially nested ones), it might be a bit painful to copy/paste some parts such as the input/output keys that might be the same for several states. To simplify this it is possible, in a state or a state machine, to create a params field which must be a dictionary in which you can store values and reuse them in the script. An example of params could be params: {outcomes: [success, fail]}. If this field has been added to a state machine then all the children states can use outcomes: params.outcomes. Please note that the same principle can be applied within a given state in order to shorten the definition of a state and make (once you get used to it) the task constructor script more compact and readable.

Examples

In this subsection we are going to give some examples of state machines based on the provided states and the framework templates [https://github.com/shadow-robot/modular_benchmarking_framework/tree/kinetic-devel/modular_framework_core/templates]. The point is not to have meaningful examples in term of task but rather to demonstrate how to use the task constructor.

Making a task constructor script more compact

Let’s start with the following task constructor script:

name: just_planning
source: framework_state_machine
node_name: just_planning_sm
outcomes: [sm_successful, sm_failed]
states:
 - PlanMotion:
 source: state_plan
 target_state_type: joint_state
 target_state_name: stability_pose
 plan_name: current_to_stability
 starting_state_type: ""
 starting_state_name: ""
 outcomes: [success_to_plan, fail_to_plan]
 input_keys: []
 output_keys: []
 io_keys: [arm_commander]
 transitions: {success: sm_successful, fail: sm_failed}

If you are launching the framework using this config file [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_api/config/named_joint_states.yaml] then you should have a state machine that plans from the current robot pose to the joint state named stability_pose. The state named PlanMotion showed above contains all the possible parameters that can be changed in our implementation [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_core/src/modular_framework_core/states/plan.py]. Taking the most of the default values defined in the state, we could simply shorten it to

name: just_planning
source: framework_state_machine
node_name: just_planning_sm
outcomes: [sm_successful, sm_failed]
states:
 - PlanMotion:
 source: state_plan
 target_state_type: joint_state
 target_state_name: stability_pose
 plan_name: current_to_stability
 outcomes: [success_to_plan, fail_to_plan]
 transitions: {success_to_plan: sm_successful, fail_to_plan: sm_failed}

Now, using the params trick you could have exactly the same behaviour created from

name: just_planning
source: framework_state_machine
node_name: just_planning_sm
outcomes: [sm_successful, sm_failed]
states:
 - PlanMotion:
 source: state_plan
 params: {target_state_type: joint_state, target_state_name: stability_pose, plan_name: current_to_stability, outcomes: [success_to_plan, fail_to_plan]}
 transitions: {success_to_plan: sm_successful, fail_to_plan: sm_failed}

Here, we are using params within a state, and since its keys are matching the names of the state’s options then we don’t need to specify them afterwards. We will provide another example of how to use the params trick.

Using a concurrent state machine

Let’s say that we want the robot to go to a first known pose and then to another one. You have a lot of different ways to do it, such as creating a trajectory in the framework and execute it, for the sake of this tutorial, we are going to design it as a state machine.

name: mock_trajectory
source: framework_state_machine
node_name: mock_trajectory_sm
outcomes: [sm_successful, sm_failed]
states:
 - ConcurrentPlan:
 source: concurrent_state_machine
 params: {state_outcomes: [success, fail], state_io_keys: [arm_commander], target_type: joint_state}
 name: simple_concurrent_planning
 outcomes: [sucess_plans, fail_plans]
 userdata: self.userdata
 default_outcome: fail
 outcome_map: {success_plans: {PlanInitPose: success, PlanStabPose: success}}
 transitions: {success_plans: MoveInit, fail_plans: sm_failed}
 states:
 - PlanStabPose:
 source: state_plan
 target_state_type: params.target_type
 target_state_name: initial_pose
 plan_name: current_to_init
 io_keys: params.state_io_keys
 - PlanStabPose:
 source: state_plan
 target_state_type: params.target_type
 target_state_name: stability_pose
 plan_name: init_to_stability
 starting_state_type: params.target_type
 starting_state_name: initial_pose
 outcomes: params.state_outcomes
 io_keys: params.state_io_keys
 - MoveInit:
 source: state_move
 params: {outcomes: [success, fail], io_keys: [arm_commander]}
 plan_name: current_to_init
 transitions: {success: MoveStab, fail: sm_failed}
 - MoveStab:
 source: state_move
 params: {outcomes: [success, fail], io_keys: [arm_commander]}
 plan_name: init_to_stability
 transitions: {success: sm_successful, fail: sm_failed}

When using this script with the framework, you should see your robot going successively to initial_pose and then to stability_pose. Since we know beforehand the starting and ending pose of the robot, it is possible to plan for both motions at the same time, saving execution time. For this purpose we have to use a concurrent state machine [http://wiki.ros.org/smach/Tutorials/Concurrence%20container]. As you can see, the different states executed within the latter requires as an input key robot_commander, so we are inheriting the userdata from the root state machine. You can also see that params here is being used in order to declare in a nested state machine the different parameters that can be used in all of its children states.

How to use params

The two different examples that we have seen so far show some examples about how to use params. However, there are some constraints about how to use this trick. For instance, you cannot add params from a parent and the state itself. As a matter of fact, the params declared within a state would overwrite the parent’s params, so keep this in mind. This is also true for the nested state machines. If you have defined a params in the header of the root state machine, everything will be overwritten for all the states contained in the named nested state machine. You can see that as the equivalent of scope variables.

Real-world state machines

We provide two task constructor scripts that should natively work with the framework. One is made especially for picking an object in simulation [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_api/task_constructor_scripts/simulation_pick.yaml] and the other is about pick and hold [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_api/task_constructor_scripts/pick_and_hold.yaml] on a physical robot not fully integrated to ROS. Both use-case rely at some point on a grasp-pose detection method that will determine where and how the manipulator should be in order to grasp the object. As explained in the introduction of this tutorial, the state machine itself is almost method-independent so that you can just change the method for benchmarking for instance.

Implementing its own states

As aforementioned, we already provide a set of six states that we think would allow to design a good range of behaviours related to manipulation. However if you are not interested in benchmarking, and you want to always use the same generative method, you might want to have a specific state that automatically runs the method without the intervention of the user.

Creating the python file

The file containing your state must be located inside a python package (with __init__.py files in python 2.x). The filename must contain only lowercase letters and underscores. The name of the class defined inside the file must be the camel case [https://en.wikipedia.org/wiki/Camel_case] version of the filename. For instance if you want to create a state that generates the next pose of the robot for camera-based servoeing, you file might be named servoeing_command.py and the state should be named ServoeingCommand. If it’s not clear, please have a look at how are named the classes defined in this folder [https://github.com/shadow-robot/modular_benchmarking_framework/tree/kinetic-devel/modular_framework_core/src/modular_framework_core/states].

Skeleton of a state

In order to make the state fully compatible with our task constructor, the state should be derived from the following template

#!/usr/bin/env python

You must import these two packages
import rospy
import smach
You can import more packages as well if you need them

class StateName(smach.State):

 # You can of course add more parameters that you are going to be able to set in the task constructor script. Make sure to make the name in this signature and the one used in the yaml script match.
 def __init__(self, outcomes=["success", "fail"], input_keys=[], output_keys=[], io_keys=["<optional_userdata_field>", "<optional_userdata_field>"]):
 # This line must be here since it makes the class a state that can be used by smach
 smach.State.__init__(self, outcomes=outcomes, io_keys=io_keys, input_keys=input_keys, output_keys=output_keys)
 # You can initialize whatever you need
 # ...
 # This line must be kept as well. We advise you to order the list of outcomes such as the last item is the "negative" outcome
 self.outcomes = outcomes

 # The function execute MUST be here since it gathers all the steps that will be run when executing the state.
 # The signature should be kept as it is. You can access any userdata defined in the io keys by using userdata.<key>
 # The execute must return at least one of the different outcomes that you have defined in the __init__
 def execute(self, userdata):
 # You can implement what you want here
 # You can also call other functions or methods of the class that you may want to implement
 # Here is an example
 if self.foo():
 # "Negative" outcomes
 return self.outcomes[-1]
 # Do other stuff
 # ...
 return self.outcomes[0]

 def foo(self):
 # Do stuff
 return True

 # You can create more functions

As you can see, creating a new state is quite easy and modular. As a matter of fact, you can add any parameters you might want to change from the task constructor and you can even use methods from external packages. You can also use functions implemented in C++ through, for instance, services or actions that you can call in the state.

Integrating a new state to the task constructor

If you have properly followed the two previous parts, the only remaining step is to import the state in the task constructor script. Fill the source field with the name of the file (without the extension). For instance if you want to add the ServoeingCommand state, I would have servoeing_command. Then you can add all the options that you have defined in your signature with the exact same spelling. You can also natively use the params trick. Don’t forget to specify the transitions! And here you are, you can now create state machines relying on your own states.

Creating its own state machine templates

Our task constructor relies on template files that define the backbone of a state machine. We provide template files for creating a basic state machine [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_core/templates/state_machine.template], and a concurrent state machine [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_core/templates/concurrent_state_machine.template]. We also provide a template for a state machine compatible with the framework [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_core/templates/framework_state_machine.template]. The major difference is that we define and initialize the userdata (set of variables that can be modified within states and that can be communicated) allowing to take the most of the different functionalities that the framework offers.

If you need to modify the initialization, you can either create modify our file, but we strongly advise you to just create another one. It can also be useful to create a template if you often use a specific state machine that you don’t change much. Here is the guide to create your own template file.

Understanding the Jinja2 part

Our task constructor is making the most of Jinja2 [https://jinja.palletsprojects.com/en/2.10.x/], a powerful templating tool. We are going to describe the most important parts of the template file.

Importing packages

The top part of your file should include the following lines

#!/usr/bin/env python

Automatically import the proper states with respect to the state machine defined in the task constructor script
{% for state_to_import in state_machine.states_source %}
from {{ state_to_import[0] }}.{{ state_to_import[1] }} import {{ state_to_import[2] }}
{% endfor %}
import smach
import rospy
You can also import more packages that you may need

As you can see, in addition to the classical python import statement, we can find some statements between curly brackets. Such lines are commands telling Jinja2 that these parts should be modified with respect to some objects’ content. Here, these few lines automatically import the proper states automatically (given that they are following the rules stated before).

Signature of the class

The class should have the following signature

class {{ state_machine.type }}(StateMachineType)

That way the name given to the class will be the same as the one you specified in the task constructor script. Please change StateMachineType by the kind of state machine you want to use. It can be for instance smach.StateMachine or smach.Concurrence.

Initialization of the class

The __init__ function should follow this template

def __init__(self, outcomes={% if "outcomes" in state_machine.parameters%}{{ state_machine.parameters.outcomes }}{% else %}["success", "fail"]{% endif %}):
 smach.StateMachine.__init__(self, outcomes=outcomes)
 with self:
 {% for state_name, state in state_machine.components.items() %}
 smach.StateMachine.add("{{ state_name }}", {{ state.type }}({% for param_name, param_value in state.parameters.items() %}{% if param_name != "name" %}{{ param_name }}={% if param_value is string and "self" not in param_value %}"{{ param_value }}"{% else %}{{ param_value }}{% endif %}{% if not loop.last %}, {% endif %}{% endif %}{% endfor %}), transitions={{ state.transitions}})
 {% endfor %}
 # You can call other functions here, such as the one responsible for userdata initialization

This part automatically creates the whole

 The framework’s core

The framework’s core

The framework’s core package [https://github.com/shadow-robot/modular_benchmarking_framework/tree/kinetic-devel/modular_framework_core] gathers all the scripts, nodes, utils and messages available and linking all the parts of the framework. If you want to change any functionality, this is where you should start investigating.

Framework’s managers

Regardless of the problem we want to solve, the ROS messages that are being used are most of the time similar and are derived from standard messages. When creating complex behaviours, it is common to have a lot of different topics created to communicate such messages generated in several nodes. In order to make these communications easier, we implemented six managers that allow dealing with the different messages for you. You can learn more about them, and how to create you own here.

Framework’s states

In order to easily create some complex tasks, we implemented six states that allow to build the most common tasks in robot manipulation. Of course, we could not think about all the different use-cases and needs. That is why you can find here the details of our states as well as a tutorial to create your own.

Framework’s simulation mode

Working in simulation is more and more popular to speed up data collection of the robot’s interaction with its environment. In order to do so, we propose a simple command line based interface in order to dynamically interact with the simulated world and place or remove objects at the user’s will. You can read more about it here.

Framework’s messages

We provide some messages that try to unify the different representations of grasping. We believe that some of their content can also be used for different tasks. In order to interact easily with widely used ROS messages, we also provide some methods in C++ and python. You can find out more about our messages or the different tools here

 Contributing

Contributing

Since there is always space for improvement, we are happy to receive your feedback. If when you are using the framework you spot some bugs, feel free to raise an issue on the github repository [https://github.com/shadow-robot/modular_benchmarking_framework]. If you do like this framework but feel like something is missing, you are free to fork it or create pull requests. It can be new functionalities, new states or change of the manager, any improvement is welcome.

If you find some parts of the documentation a bit confusing or blurry, feel free to raise an issue or create a pull request on this repository [https://github.com/shadow-robot/modular_benchmarking_documentation].

 Index

Index

 Page Not Found

Page Not Found

Sorry, we couldn't find that page. Try going to the homepage.

 Description package

Description package

This short tutorial explains what is a description package, why we need it and what it should contain. It also gives an overview about how to create Gazebo world files.

What is it?

A description package is required to describe the environment in which the robot will operate. This ROS package (whatever its name) must contain all required information regarding the robot’s setup. It gathers gazebo .world files, as well as all the models required to display it and scenes in order to restrain robot’s movement and having proper collision checking (.scene files).
The different files should be organized in the three following folders:

- models
- worlds
- scenes

You can find a description package here [https://github.com/ARQ-CRISP/ARQ_common_packages/tree/master/arq_description_common].

Models

The folder models must contain at least all the objects used to compose a world, defined as sdf files. It is also strongly recommended adding inside the same folder all the objects you want to be able to spawn in gazebo.
The minimal directory structure of models is the following:

models
+-- <model_using_mesh_name>
| +-- meshes
| +-- <model_using_mesh_name>.stl
| +-- model.config
| +-- model.sdf
+-- <model_no_mesh_name>
| +-- model.config
| +-- model.sdf

Please note that the meshes can also be .dae files, allowing you to add texture.

Creating Gazebo world file

The aforementioned models will allow creating Gazebo worlds. It exists several ways of creating gazebo worlds, but we encourage to follow the steps described here [https://shadow-experimental.readthedocs.io/en/latest/user_guide/1_6_software_description.html#creating-a-new-world-scene] (all required dependencies are installed in the docker). If you are not a big fan of GUI and you already have a good hang of how Gazebo world files are working, you can still create your world.

Creating a Gazebo world without a GUI

The most important part is having all the objects you want to add to your world to be in the folder that you have specified for GAZEBO_MODEL_PATH and GAZEBO_WORKSPACE_PATH. Once this is done, you can just edit the following template:

<?xml version="1.0" ?>
<!-- Must be a sdf file -->
<sdf version="1.5">
 <world name="default">
 <!-- Add a source of light, which is very important if embedding a camera -->
 <light name='sun' type='directional'>
 <cast_shadows>1</cast_shadows>
 <pose frame=''>0 0 10 0 -0 0</pose>
 <diffuse>0.8 0.8 0.8 1</diffuse>
 <specular>0.1 0.1 0.1 1</specular>
 <attenuation>
 <range>1000</range>
 <constant>0.9</constant>
 <linear>0.01</linear>
 <quadratic>0.001</quadratic>
 </attenuation>
 <direction>-0.5 0.5 -1</direction>
 </light>
 <!-- Include one after the other the different objects you want to add -->
 <include>
 <!-- the "model://" refers to the GAZEBO_MODEL_PATH and "my_first_model" refers to the name of the folder containing, the sdf and config file-->
 <uri>model://my_first_model</uri>
 <!-- Whether you want to make the object static (meaning that it will ignore all applied forces) -->
 <static>true</static>
 <!-- Name you want to give to the model -->
 <name>my_first_model</name>
 <!-- Create the reference frame that is going to be used by the pose provided in the model file -->
 <pose>0.0 0.0 0.0 0 0 0</pose>
 </include>
 <!-- model2 -->
 <include>
 <uri>model://my_second_model</uri>
 <static>true</static>
 <name>my_second_model</name>
 <pose>0.0 0.0 0.0 0 0 0</pose>
 </include>
 <!-- Physics parameters -->
 <physics type="ode">
 <gravity>0.000000 0.000000 -9.810000</gravity>
 <ode>
 <solver>
 <type>quick</type>
 <iters>100</iters>
 <precon_iters>0</precon_iters>
 <sor>1.000000</sor>
 </solver>
 <constraints>
 <cfm>0.000000</cfm>
 <erp>0.500000</erp>
 <contact_max_correcting_vel>1000.000000</contact_max_correcting_vel>
 <contact_surface_layer>0.00000</contact_surface_layer>
 </constraints>
 </ode>
 <real_time_update_rate>0.000000</real_time_update_rate>
 <max_step_size>0.001000</max_step_size>
 </physics>
 <scene>
 <ambient>0.4 0.4 0.4 1</ambient>
 <background>0.7 0.7 1 1</background>
 <shadows>1</shadows>
 </scene>
 <!-- Display configuration -->
 <gui fullscreen='0'>
 <camera name='user_camera'>
 <pose frame=''>2.8784 4.2586 1.43117 0 0.083643 -2.30699</pose>
 <view_controller>orbit</view_controller>
 </camera>
 </gui>
 </world>
</sdf>

Once modified, you can save the file with a .world extension, and that’s it you have your Gazebo world created!

Creating scenes files

Scene files gather all the information about the collision scene of the robot. You can either create a simplified version of your environment using primitive shapes (not recommended) or use the .world file that you have just created. You can either follow the instructions on this link [https://shadow-experimental.readthedocs.io/en/latest/user_guide/1_6_software_description.html#creating-a-new-world-scene] or use the framework to create the scene file. In simulation mode, specify the world file corresponding to the scene you want to generate. Once the framework launched go in RViz, if you don’t have Motion Planning add it. Then go in the tab called Scene Objects and click on Export As Text. Choose the path to the scenes folder of your description package, pick a name and save it. And here is your scene file.

 Robot package

Robot package

This short tutorial explains what is a robot package, why we need it and what it should contain. It also give an overview about what is a controller file and how to modify them.

What is it?

A robot package contains all the information that is vital to control a robot. It must contain urdf and controller files describing the robot and how to control it. The different files should be organized in two different folders:

- controllers
- urdf

Controller file

A controller file contains all the information about how ROS should operate the different robots it recognizes. It means that only controllers for physical robots that can be controlled with ROS controllers should be defined there. When running the simulation mode, Moveit assumes that the robot can be controlled that way, which means that you need to add the controllers to the file.

Each controller should be defined in the same file and each must follow this template:

<controller_name>:
 type: "<controller_type>"
 joints:
 - <joint_name_1>
 - ...
 - <joint_name_n>
 constraints:
 goal_time: <goal_time>
 stopped_velocity_tolerance: <velocity_tolerance>
 <joint_name_1>: {trajectory: <value>, goal: <value>}
 <joint_name_2>: {trajectory: <value>, goal: <value>}
 ...
 <joint_name_m>: {trajectory: <value>, goal: <value>}
 stop_trajectory_duration: <trajectory_duration>
 state_publish_rate: <publish_rate>
 action_monitor_rate: <monitor_rate>
 allow_partial_joints_goal: <boolean>

If you create your own controller (derived from controller_interface::ControllerBase) declared in a plugin, you must define it in this file as well. Please note that some of the options, such as constraints, stop_trajectory_duration or others may not be relevant.

Whether in simulation or when operating the physical robot, the framework is relying on Moveit, so if you are using native ROS controllers, please make sure that they are also included (with the same name) in the controllers.yaml file of your moveit config package. If you are using your own controller (derived from controller_interface::ControllerBase) you don’t need to include it in the moveit config package. But if the physical manipulator you want to run does not have a hardware interface, then must not add anything in this file or in the moveit config package.

 Creating a Moveit! config package compatible with the framework

Creating a Moveit! config package compatible with the framework

If you are reading this, it means that you already have a moveit_config package or you want to create one manually step by step. In the first case you can directly go to this subsection. Otherwise, please follow thoroughly the following steps.

Copying an existing moveit_config package

Instead of creating a moveit config package from scratch, we are going to start from an existing one. First create an empty folder which name will be the name of the moveit config package (we advise you to make it end with _moveit_config) and copy the content of this repository [https://github.com/ARQ-CRISP/template_moveit_config.git] inside it. You can also initialize a repository if you want to keep it in git. You should now have the following tree in your folder:

+-- config
|
+-- launch
|
CMakeLists.txt
package.xml

Changing the package information

In package.xml replace all the information in the description, the maintainer, the author and the name. In CMakeLists.txt, modify what’s inside project. The name inside project in the CMakeLists and the name inside <name> </name> of the package file must correspond to the name of your folder!. We encourage you to just replace template_moveit_config by the name of your folder in those two files.

To make sure that everything is working fine you can run catkin_make. It should finish successfully.

Changing the content of the package to use your robot

Now, you can search all the occurrences of template_moveit_config and replace them with your folder’s name. Once this is done (it is very important to do the previous step first), you can search for all the occurrences of template and replace it with the name you want to give to your robot. Make sure to change the filenames as well. You can then replace all the <manipulator_name> with the name you want to give to your manipulator. The last easy step is to find all the occurrences of <manipulator_finger_i> and to change them to the name you want to give for each finger.

Changing the urdf and sdf file

The first thing to do is to include the proper urdf (or xacro) files of both the arm and the manipulator. If required you can also create arguments to make this urdf file a bit more generic. Change <base_link_of_the_robot> with the name of the base link of the robot arm. Define the two robot parts in the urdf file and you are done with it.

For the srdf file, change the description of each link between <> with their real names. For instance of ur arms, <ee_link_of_robot_arm> becomes ee_link. Make sure to do it everywhere in the file and to add the proper disabled collisions. For this part, we strongly advise to use the moveit setup assistant (and then copy-paste the result).

TIP: For each element surrounded by <>, it is easier to search for it in the whole folder so you avoid any incompatibility.

Specifying the name of the joints of the robot

The last step consists in specifying the name of the joints for each group we want Moveit to be able to control. Replace the proper values in controllers.yaml, fake_controllers.yaml and joint_limits.yaml.

Making the package compatible

If you already have a moveit config package or just have created it using the assistant, you just need to add <rosparam command="load" file="$(find smart_manipulation_framework_api)/config/sensor_plugins.yaml" /> at the top of sensor_manager.launch.xml. If you don’t, the modification that you bring inside the config files regarding the sensor’s plugins won’t be considered.

Testing that everything works

To make sure that everything works, you can run the framework with your newly created moveit package. In order to avoid any error message make sure that the name of the ROS controllers declared in controllers.yaml match with the controller file that you provide to the framework.

You should be able to move the robot arm and the manipulator in rviz and see the change in Gazebo.

It does not work for me…

If for some reason it does not work, you can try to have a look at this [https://github.com/ARQ-CRISP/arq_ur5_ezgripper_moveit_config] moveit config package and see what are the differences.

 Framework’s managers

Framework’s managers

The managers we propose in this framework allow to ease the communication between the different nodes that are required to create your task. You can for instance store a given message in node A and to retrieve it in node B without creating any topic since the managers are natively running when starting the framework and provide services for different operations. Another good thing is that using service is language independent, so whether you are creating your nodes in python or in C++ you can still make the most of the managers. Those managers can also be used in states, action servers, more complicated services and so on.

Anonymous messages

All the managers are at least able to store and return messages through services. We provide two ways to do so. The first one is by naming them and retrieving them using the name given when storing. This is pretty useful when dealing with messages that are likely to be used again or that we want to access later. But sometimes, and especially when running closed loop methods, we just want to use messages just once without having to name it and that’s all. That is why all the managers (except the ACM) can deal with anonymous messages.

Messages without any name specified in the service will be stored in a specific queue. Every time a request for getting the message will be received without name, then the oldest anonymous message will be returned. Unlike named messages, once returned the message is deleted from memory and cannot be retrieved any more. You can of course add as many as you want, just keep in mind that the vector’s behaviour is First-In-First-Out (FIFO).

Provided managers

We are going to briefly review the six different managers that are natively supported by the framework and can help you develop your methods.

Allowed Collision Matrix manager

The ACM manager contains the following three services:

	set_init_acm: Allows to store a provided ACM and set it as reference. Useful when we want to reinitialise (set it to a previous state) it several times without keeping in memory all the modifications brought to it. More details about the service here.

	update_acm_entry: Updates the entries of the current ACM. Useful when dynamically adding objects to the scene. With the same service you can add and delete new objects to the ACM or reinitialise the matrix. You can find the service here.

	get_modified_acm: Updates the allowed collision according to the specified modification and returns it. You can allow/disallow manipulator self collisions, collisions between the manipulator and given objects or just using it as a simple getter. Especially useful when we want to allow or disallow collisions of the manipulator. You can find out more about it here.

Moveit plan manager

The Moveit plan manager contains two services:

	add_plan: Stores a RobotTrajectory message (which is a Moveit Plan). It is especially useful if you are using your own motion planner. The service is defined here.

	get_plan: Gives access to an already stored RobotTrajectory message. Especially useful when wanting to execute or to modify a previously computed plan. The service can be found here.

Please note that the manager does not compute any plan!

Standardised grasp manager

For grasping, our framework is relying on a specific message defining a grasp. This manager contains two services to deal with such messages:

	add_grasp: Store a StandardisedGrasp. Useful for storing grasps generating by methods in other nodes (not necessarily part of the framework). You can find out more about it here.

	get_grasp: Gets an already stored StandardisedGrasp message. Useful to access and potentially execute an already generated grasp. Details can be found here.

Joint state manager

The joint state manager contains two services:

	add_joint_state: Stores a JointState message. Useful for storing joint states dynamically generated by methods. You can find the details of this service here.

	get_joint_state: Gets a previously stored JointState message. Can be used to edit or move to an existing one. Details of this service are here.

In addition to these two services, this manager is also taking care of loading the content of the config file [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_api/config/named_joint_states.yaml] named_joint_states.yaml. It allows you to create, use and access pre-recorded joint states whenever and where you want while using the framework.

Pose stamped manager

The pose stamped manager contains two services:

	add_pose_stamped: Stores a PoseStamped message. Useful for storing poses dynamically generated by methods. You can find the details of this service here.

	get_pose_stamped: Gets a previously stored PoseStamped message. Can be used to edit or move to an existing one. Details of this service are here.

The manager does not create PoseStamped messages! If you want helpers to do so, you can have a look at here.

Joint trajectory manager

The joint trajectory manager contains two services:

	add_trajectory: Stores a JointTrajectory message. Useful for storing joint trajectories dynamically generated by methods. You can find the details of this service here.

	get_trajectory: Gets a previously stored JointTrajectory message. Can be used to edit or move according to an existing one. Details of this service are here.

In addition to these two services, this manager is also taking care of creating the trajectories defined in the config file [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_api/config/named_trajectories.yaml] named_trajectories.yaml. It allows you to easily define predefined trajectories in a very accurate way. You can then use these trajectories where you want as long as the framework is running.

Create your own manager

If you need more operations to be carried out by the managers, you can either modify them or to create new ones. You can for instance create a manager that handles point cloud messages and process them. Please note that you are free to choose the language that suits you the most, you are not bound to implement it in C++.

In order to integrate your manager to the framework, the only thing you need to do is to wrap it in a ROS node and to launch the node in the core launch file [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_core/launch/run_framework_core.launch]. Do not forget to add the services and potentially your node in the CMakeLists.txt. You should now be able to use it in states and so on.

 Provided states

Provided states

In order to create a range of applications, we provide six states that can be used natively when installing the framework. We tried to make them as generic as possible so you don’t need to implement yours, but if for some reasons it happens, you can get inspiration from those.

Common features

We have tried to make our states as parametrisable as possible, so they can be used in a lot of different use cases. In the task constructor you can directly, for all our states, set the following arguments:

	outcomes: List of string that describes the outcome of the state. Default is ["success", "fail"].

	input_keys: List of string gathering the name of the different fields of the userdata that is going to be used as input.

	output_keys: List of string gathering the name of the different fields of the userdata that is going to be used as output.

	io_keys: List of string gathering the name of the different fields of the userdata that is going to be used both as input and output.

Depending on the purpose of the state the default value of such fields will differ so you don’t have to modify them except if you need to. Depending on the functionality of the state, other parameters may need to be configured in the task constructor.

Waiting for a signal

While building a task, it is quite interesting to be able to control the flow of the state machine. For instance, when benchmarking, we might want to trigger a generative method manually every time and the state machine to wait for this method to be launched before proceeding. That is why we provide a configurable blocking state that allows you to control the state machine flow. In the task constructor you can set:

	topic_name: String stating the name of the topic containing a boolean message

	timeout: Optional integer stating how long the state should block (in seconds). Default is None, meaning that it will be blocking until it receives a message on the given topic.

This state will listen to the topic topic_name that must contain a Boolean message [http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html] and will return the positive outcome if and only if the content of this message is True. You can also specify how long this state should be blocking. You can find more details about the implementation here.

Allowing collisions for the manipulator

While carrying out a manipulation related task, we want to be able to control the collisions between the manipulator and the environment. For instance, we usually don’t want the robot hand to collide with the table, but we want the robot to be able to collide with a given object to manipulate it. If you are using Moveit to plan and control your robot hand (whether in simulation or in real world), we provide a state that allows collisions between the different links of the manipulator and/or collisions between the manipulator and some objects. In order to make the most of it using the task constructor, you can change these parameters:

	allow: Boolean specifying whether the state should allow or disallow collision check for the hand

	collision_type: Optional string telling what kind of collision should be allowed. It must be either "", self-collision or object-collision. Default is "" which is equivalent to a simple getter of the ACM [http://docs.ros.org/kinetic/api/moveit_core/html/classcollision__detection_1_1AllowedCollisionMatrix.html].

	objects: Optional list of objects we want to allow the manipulator to collide with. The given objects must be part of the scene and be part of the models folder of the description package. Default is [], implying that all objects added to the original scene will be considered. The code of the state can be found here

Please note that you need two distinct states, one for allowing and the other one for disallowing collisions.

Selecting messages to store in the userdata

Some methods generate a set of solutions to a given problem. But considering only the best one (according to some metric) might be problematic. As a matter of fact, if this solution is not feasible, then this would fail the state machine and terminate the task. Instead of having to start over and over, we propose a state that allows to select some messages stored in one of our managers and select them one after the other. That way, every time the state is executed, another message can be selected and integrated in the userdata. You can hence create a loop to this state that will keep updating the userdata with a message until the task has been successful. In the task constructor you can set this state using the following parameters:

	message_type: String specifying the type of message to select. Can be joint_state, trajectory, plan, pose, grasp, pregrasp or postgrasp.

	output_keys: List that should contain selected_<message_type> in order to store the selected message in the userdata.

	message_names: Optional list containing the names of the messages to retrieve and select one after the other. Default is None, meaning that the latest anonymous <message_type> will be selected.

You can find more information about the state in this file.

Executing a grasp

Once a grasp has been generated by a given method, we want at some point to actuate the manipulator to execute the predicted grasp. For this purpose we provide a hardware-agnostic state that, given a StandardisedGrasp message will execute it using the action server that has been loaded by the framework. You can find more information about the action server here. This state is just taking care of actuating the manipulator for grasping.

The message containing the grasp definition can be provided to the state by two means. The first one is to store the grasp to execute in the userdata under the name selected_grasp. As a matter of fact, if the input keys of this state contain such keyword, then this grasp will be executed. Otherwise, you can directly specify the name of the grasp that must be retrieved from the standardised grasp manager, and it will be executed. In the task constructor, you can specify:

	grasp_type: The manipulator state to be executed, can be pregrasp, grasp or postgrasp.

	grasp_name: Optional string that states which grasp message should be retreived from the manager. Default is "", meaning that it will be the latest anonymous grasp that will be retrieved.

	input_keys: Optional list that can contain selected_grasp in order to specify that the state must execute the grasp saved in the userdata. If selected_grasp is part of the input keys then our state will use it by default.

The two different ways to provide grasp messages and the trick about anonymous grasps should allow you to cope with a range of applications involving grasping. You can find our implementation of the state here.

Planning a motion for the robot arm

Most of the time, the robot arm’s environment is quite complex, which forces us to add an extra step before moving the arm: planning the motion. We provide therefore a generic state allowing to plan a motion for the robot arm from a starting to a target state using Moveit. Once again, you can provide our state the starting and target robot state by two means. You can either retrieve them using the provided managers or through the state machine’s userdata. The different options that you can set from the task constructor are:

	target_state_type: String specifying the target state’s type. Can be pose, joint_state, grasp, pregrasp or postgrasp.

	target_state_name: Optional string containing the target state’s name. Used to retrieve it using the corresponding manager. Default is "" meaning that the latest anonymous target_state_type message will be retrieved. If set to userdata then try to load the field selected_<target_state_type> from the userdata.

	plan_name: Optional string containing the name that will be given to the computed plan. Can be empty to make it anonymous. Default is "" meaning that it will make it anonymous.

	starting_state_type: Optional string specifying the starting state’s type. Can be "", pose, joint_state, grasp, pregrasp or postgrasp. Default is "" meaning that the current robot’s state (at execution) will be used as starting state.

	starting_state_name: Optional string containing the starting state’s name. Used to retrieve it using the corresponding manager. Default is "" meaning that the latest anonymous starting_state_type will be retrieved. If set to userdata then try to load the field selected_<starting_state_type> from the userdata.

	input_keys: Optional list that can contain selected_<type> with <type> being the different types supported. It allows to provide the state some previously selected state.

Please note that for using a message stored in the userdata, you must set the corresponding target_state_name or starting_state_name to userdata. Otherwise, by default the latest anonymous message will be used! As you can see, the different options allow you to have quite the flexibility and using what is potentially stored in userdata as starting or target state. In addition, you can have any of the supported state type as starting or target, easing the different transform usually required.

Executing a plan for the robot arm

One obvious action that must be performed to solve any manipulation problem is moving the robot arm. Once the motion plan has been computed, this state can either execute it if it’s part of the userdata or retrieve it from the moveit plan manager. You can set this state in the task constructor using the following parameters:

	plan_name: Optional string containing the name of the plan to retrieve from the manager. Default is "" meaning that the latest anonymous plan will be picked.

	input_keys: Optional list that can contain selected_plan in order to specify that the state must execute the plan saved in the userdata. If selected_plan is part of the input keys then our state will use it by default.

The code of this state can be found here.

 Interacting with the simulated environment

Interacting with the simulated environment

Most of the time, simulation is being used to either experiments some methods without involving the physical robot or to gather data. For both scenarios, you may want to interact with the environment by adding or deleting one or more objects. For this purpose we provide a simple interface to spawn and remove objects in Gazebo that will be automatically updated the collision scene.

Prerequisite

The framework can only spawn objects that are described in a sdf file [http://gazebosim.org/tutorials?tut=build_model]. We strongly advise to store all the objects that you are supposed to spawn in the description package.

Using the api package

The easiest way to spawn or delete objects is to use the provided launch file and set the following arguments:

	delete_object: Boolean stating whether the specified object must be deleted. Default is false.

	object_name: Optional string specifying the name that you want to give to the object to spawn. It is very useful when you want to spawn several times the same objects. If you don’t you will not be able to spawn twice the same object. Default is "", meaning that you can spawn the given object only once. To respawn it you will need to delete it first.

	object_type: Optional string specifying the type of the object. It must correspond to the name of one of the folder in the description package corresponding to an object (in models). Default is "".

	reference_frame: Optional string specifying the name of the frame that should be used as reference for the spawned object. Default is world.

	object_position: Optional string specifying the position where the object should be spawned. Format should be x,y,z (in meters). For instance 0.2,0.5,0.9. Default is 0,0,0

	object_rpy_orientation: Optional string specifying the orientation of the spawned object. Format should be r,p,y (in radians). Default is 0,0,0.

	file_path: Optional string containing the path to a sdf file containing the description of the object to spawn. Default is "".

Please note that you must provide either file_path or object_type in order to spawn an object. When deleting an object you just need to specify its name (and obviously set delete_object to true). If you spawned it without naming it, the default name is object_type or file_path.

When adding an object the Allowed Collision Matrix is automatically updated and by default, the robot can’t enter in collision with the object. If you want to allow a collision, please use the different services provided by the proper manager.

Using the node from the core

If you prefer using the node that is wrapped in the api package, you can directly call the node manage_object.py that can be found in the modular_framework_core package.

You can specify the different options using the following arguments:

	-d or --delete followed by true or false.

	-p or --position followed by the position (same format as before)

	-o or --orientation followed by the orientation (same format as before)

	-n or --name followed by the name given to the object

	-t or --type followed by the type of object

	-r or --reference followed by the name of the reference frame

	-f or --file followed by the path to the sdf file describing the object to spawn

You can find the source here for more information about the arguments.

 Framework’s messages and action

Framework’s messages and action

In addition to the classic ROS messages and actions, the framework supports some home made messages and action that can be used in your scripts. We also provide some handful methods that allow to create some messages easily in order to avoid boilerplate. All the messages can be found in this folder and the action can be found here.

TorqueIntensity

This message contains the information required to squeeze. As a matter of fact, it exists some two-steps controller for grasping. The first one is to use position controller (for instance) to actuate the joints to a specific state. Once the latter is reached, torque is applied to some joints. The name of such joints must be specified in joint_names. Since each joint can apply a different percentage of max_torque, the value (between -1 and 1) corresponding to each joint must be specified in torque_intensity. A negative value would mean motion in the outward direction for instance.

ManipulatorState

This message fully describes the state of the manipulator. It contains a field posture which is a JointState [http://docs.ros.org/melodic/api/sensor_msgs/html/msg/JointState.html] describing the internal state of the manipulator. It also contains the field pose which describes with a PoseStamped [http://docs.ros.org/melodic/api/geometry_msgs/html/msg/PoseStamped.html] the pose of the manipulator.

We believe that this information allow to specify the state of the manipulator regardless of the application.

StandardisedGrasp

The definition of a grasp differs greatly from one work to another. We propose here a quite generic definition of a grasp. Since you can use only some of the fields contained in this message, we believe that this message can be compatible with most of the different works about grasping.

In our definition, a grasp can be characterised by:

	grasp_id: String that can be used to name the given grasp. Especially useful when stored in a database.

	hand_id: String that specifies for which manipulator the grasp has been created. Useful when storing messages in a database.

	object_id: String specifying for which object the grasp has been generated. Especially useful when grasping known or familiar objects. Can also be used to do a query in a database.

	pregrasp: ManipulatorState message that contains how should be the manipulator before grasping. Can be filled with an empty ManipulatorState message.

	grasp: ManipulatorState message containing how the manipulator should be for grasping an object. Can be filled with an empty ManipulatorState message.

	postgrasp: ManipulatorState message containing how the manipulator should be for after grasping an object. It can be seen as the release state. Can be filled with an empty ManipulatorState message.

	torque_intensity: TorqueIntensity message that contains how the manipulator should behave when a two-steps controller is used. Can be filled with an empty TorqueIntensity message.

	grasp_quality: Float estimating the probability of success of the given grasp. This value highly depends on the task carried out, and to the metric being used. These choices is left to you. Can be 0.

As you can see, most of the methods generating grasps provide at least some of the information contained in this message. That is why with some simple modification we can easily make it compatible with most of the methods.

GraspCommand

This message contains all information required to execute a grasp. In addition to the StandardisedGrasp message, it contains the grasp state (which phase should be executed next) as well as the maximum torque the manipulator should deploy. Having the grasp state allows to use the same grasp message to execute three different manipulator states by just changing its value.

Grasp action

The provided action server dedicated to grasping relies on this action. The goal definition is the GraspCommand message. Its result is a set of three booleans that must be returned stating whether the grasp state defined in the goal has correctly been executed. We defined the feedback as the joint state of the manipulator. You can find an example of action server here [https://github.com/shadow-robot/modular_benchmarking_framework/blob/kinetic-devel/modular_framework_core/nodes/moveit_grasp_action_server.cpp] and here [https://github.com/ARQ-CRISP/EZGripper/blob/master/ezgripper_driver/nodes/ezgripper_controller.py].

Utils

We provide some function both in python and in C++ in order to help you create some standard and widely used ROS messages and some of the aforementioned messages.

You can for instance find a C++ function creating a StandardisedGrasp message for you from a set on input parameters. The python equivalent can be found here. You also have a set of handful functions taking care of creating standard messages such as PoseStamped, and JointState.

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 The Modular Benchmarking Framework Documentation

 		
 Installing the framework

 		
 Hardware specifications

 		
 Installing the framework

 		
 Prerequisite

 		
 You have a nvidia card

 		
 You don’t have a nvidia card

 		
 Future releases

 		
 Configuring the framework

 		
 Config files

 		
 Hardware connection

 		
 Generative methods parameters

 		
 Manipulator controller

 		
 Connection to an external manipulator

 		
 Motion Planner config

 		
 Known joint states

 		
 Known trajectories

 		
 Sensor plugins

 		
 Sensors config

 		
 Task Constructor
